扫码下载APP
及时接收最新考试资讯及
备考信息
正保会计网校为了帮助广大考生充分备考,整理了银行从业资格考试知识点供大家参考,希望对广大考生有所帮助,祝大家学习愉快,梦想成真!
第三章 信用风险管理
3.2 信用风险计量
3.2.2 客户评级
2.客户信用评级的发展
从银行业的发展历程来看,商业银行客户信用评级大致经历了专家判断法、信用评分模型、违约概率模型三个主要发展阶段。
(2)信用评分模型。
信用评分模型是一种传统的信用风险量化模型,利用可观察到的借款人特征变量计算出一个数值(得分)来代表债务人的信用风险,并将借款人归类于不同的风险等级。对个人客户而言,可观察到的特征变量主要包括收入、资产、年龄、职业以及居住地等;对法人客户而言,包括现金流量、各种财务比率等。信用评分模型的关键在于特征变量的选择和各自权重的确定。目前,应用最广泛的信用评分模型有线性概率模型(Linear Probability Model)、Logit模型、Probit模型和线性辨别模型(Linear Discriminant Model)。信用评分模型是商业银行分析借款人信用风险的主要方法之一,但在使用过程中存在一些问题:
①信用评分模型是建立在对历史数据(而非当前市场数据)模拟的基础上,回归方程中各特征变量的权重在一定时间内保持不变。
②信用评分模型对借款人历史数据的要求较高,商业银行需要建立起一个包括大多数企业历史数据的数据库。
(3)违约概率模型
违约概率模型分析属于现代信用风险计量方法。与传统的专家判断法和信用评分模型相比,违约概率模型能够直接估计客户的违约概率。同时,需要商业银行建立一致的、明确的违约定义,并且在此基础上积累至少五年的数据。毫无疑问,信用风险量化模型的发展正在对传统的信用风险管理模式产生革命性的影响。针对我国银行业的发展现状,商业银行将违约概率模型和传统的信用评分法、专家系统相结合、取长补短,有助于提高信用风险评估/计量水平。
Copyright © 2000 - www.fawtography.com All Rights Reserved. 北京正保会计科技有限公司 版权所有
京B2-20200959 京ICP备20012371号-7 出版物经营许可证 京公网安备 11010802044457号