问题已解决
1/(1+i)^9=1/(1+i)^10*(1+i)这个等式哪里相等?不是应该是(1+i)^9*(1+i)=(1+i)^10吗?
![](https://member.chinaacc.com/homes/resources/images/home/avatar/9.jpg)
![](/wenda/_nuxt/img/iconWarn.60bd4fe.jpg)
![](https://pic1.acc5.cn/010/56/93/55_avatar_middle.jpg?t=1651204062)
同学,你好
(1+i)^9*(1+i)=(1+i)^10,你的理解正确,所以(1+i)^9=(1+i)^10/(1+i)
1/(1+i)^9是(1+i)^9的倒数,所以1/(1+i)^9=1/[(1+i)^10/(1+i)],分子分母同时乘以(1+i),得出
1/(1+i)^9=(1+i)/(1+i)^10=1/(1+i)^10*(1+i)
2022 06/05 16:58